
1

http://gridmon.dl.ac.uk/nfnn/

NFNN2, 20th-21st June 2005
National e-Science Centre, Edinburgh

TCP Tuning Techniques for
High-Speed Wide-Area Networks

Brian L. Tierney

Distributed Systems Department
Lawrence Berkeley National Laboratory

Slide: 2Brian L. Tierney

Wizard Gap

Slide from
Matt Mathis, PSC

2

Slide: 3Brian L. Tierney

Today’s Talk

This talk will cover:
 Information needed to be a “wizard”
Current work being done so you don’t have to be a

wizard

Outline
 TCP Overview
 TCP Tuning Techniques (focus on Linux)
 TCP Issues
Network Monitoring Tools
Current TCP Research

Slide: 4Brian L. Tierney

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

How TCP works: A very short overview

 Congestion window (CWND) = the number of packets the
sender is allowed to send
 The larger the window size, the higher the throughput

Throughput = Window size / Round-trip Time

 TCP Slow start
 exponentially increase the congestion window size until a packet is

lost
 this gets a rough estimate of the optimal congestion window

size

3

Slide: 5Brian L. Tierney

TCP Overview

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

 Congestion avoidance
 additive increase: starting from the rough estimate, linearly

increase the congestion window size to probe for additional
available bandwidth

 multiplicative decrease: cut congestion window size aggressively if
a timeout occurs

Slide: 6Brian L. Tierney

TCP Overview

CWND
slow start:

exponential
increase

congestion
avoidance:

linear
increase

packet loss

time

retransmit:
slow start

again

timeout

 Fast Retransmit: retransmit after 3 duplicate acks (got 3 additional
packets without getting the one you are waiting for)
 this prevents expensive timeouts
 no need to go into “slow start” again

 At steady state, CWND oscillates around the optimal window size
 With a retransmission timeout, slow start is triggered again

4

Slide: 7Brian L. Tierney

Terminology

 The term “Network Throughput” is vague and should be
avoided
 Capacity: link speed

Narrow Link: link with the lowest capacity along a path
Capacity of the end-to-end path = capacity of the narrow link

 Utilized bandwidth: current traffic load
 Available bandwidth: capacity – utilized bandwidth

Tight Link: link with the least available bandwidth in a path
 Achievable bandwidth: includes protocol and host issues

45 Mbps 10 Mbps 100 Mbps 45 Mbps

Narrow Link
Tight Link

source sink

Slide: 8Brian L. Tierney

More Terminology

RTT: Round-trip time
Bandwidth*Delay Product = BDP

 The number of bytes in flight to fill the entire path
Example: 100 Mbps path; ping shows a 75 ms RTT

BDP = 100 * 0.075 / 2 = 3.75 Mbits (470 KB)
 LFN: Long Fat Networks

A network with a large BDP

5

Slide: 9Brian L. Tierney

TCP Performance Tuning Issues

Getting good TCP performance over high-latency
high-bandwidth networks is not easy!

You must keep the pipe full, and the size of the
pipe is directly related to the network latency
Example: from LBNL (Berkeley, CA) to ANL (near

Chicago, IL), the narrow link is 1000 Mbits/sec, and the
one-way latency is 25ms

Need (1000 / 8) * .025 sec = 3.125 MBytes of data “in
flight” to fill the pipe

Slide: 10Brian L. Tierney

Setting the TCP buffer sizes

 It is critical to use the optimal TCP send and receive
socket buffer sizes for the link you are using.
 Recommended size = 2 x Bandwidth Delay Product (BDP)
 if too small, the TCP window will never fully open up
 if too large, the sender can overrun the receiver, and the TCP

window will shut down

 Default TCP buffer sizes are way too small for this type of
network
 default TCP send/receive buffers are typically 64 KB
 with default TCP buffers, you can only get a small % of the

available bandwidth!

6

Slide: 11Brian L. Tierney

Importance of TCP Tuning

LAN (rtt = 1ms)
WAN (rtt = 50ms)

Tuned for
LAN

Tuned for
WAN

Tuned for
Both

Th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

)

100

200

300

64KB TCP
Buffers

512 KB
TCP Buffers

264

44

152
112

264

112

Slide: 12Brian L. Tierney

TCP Buffer Tuning: System

 Need to adjust system max TCP buffer
 Example: in Linux (2.4 and 2.6) add the entries below to the file

/etc/sysctl.conf, and then run "sysctl -p”

increase TCP max buffer size
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
increase Linux autotuning TCP buffer limits
min, default, and max number of bytes to use
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

 Similar changes needed for other Unix OS’s
 For more info, see: http://dsd.lbl.gov/TCP-Tuning/

7

Slide: 13Brian L. Tierney

TCP Buffer Tuning: Application
 Must adjust buffer size in your applications:

 int skt, int sndsize = 2 * 1024 * 1024;
 err = setsockopt(skt, SOL_SOCKET, SO_SNDBUF,
 (char *)&sndsize,(int)sizeof(sndsize));
and/or
 err = setsockopt(skt, SOL_SOCKET, SO_RCVBUF,
 (char *)&sndsize,(int)sizeof(sndsize));

 It’s a good idea to check the following:
err = getsockopt(skt, SOL_SOCKET, SO_RCVBUF,

(char *)&sockbufsize, &size);
If (size != sndsize)

printf(stderr, “Warning: requested TCP buffer of %d,
but only got %d \n”, sndsize, size);

Slide: 14Brian L. Tierney

Determining the Buffer Size

 The optimal buffer size is twice the bandwidth*delay
product of the link:

buffer size = 2 * bandwidth * delay

 The ping program can be used to get the delay
 e.g.: >ping -s 1500 lxplus.cern.ch

1500 bytes from lxplus012.cern.ch: icmp_seq=0. time=175. ms
1500 bytes from lxplus012.cern.ch: icmp_seq=1. time=176. ms
1500 bytes from lxplus012.cern.ch: icmp_seq=2. time=175. ms

 pipechar or pathrate can be used to get the bandwidth of
the slowest hop in your path. (see next slides)

 Since ping gives the round trip time (RTT), this formula
can be used instead of the previous one:

buffer size = bandwidth * RTT

8

Slide: 15Brian L. Tierney

Buffer Size Example

 ping time = 50 ms
Narrow link = 500 Mbps (62 Mbytes/sec)

 e.g.: the end-to-end network consists of all 1000 BT
ethernet and OC-12 (622 Mbps)

TCP buffers should be:
 .05 sec * 62 = 3.1 Mbytes

Slide: 16Brian L. Tierney

Sample Buffer Sizes

 UK to...
 UK (RTT = 5 ms, narrow link = 1000 Mbps) : 625 KB
 Europe: (RTT = 25 ms, narrow link = 500 Mbps): 1.56 MB
 US: (RTT = 150 ms, narrow link = 500 Mbps): 9.4 MB
 Japan: (RTT = 260, narrow link = 150 Mbps): 4.9 MB

 Note: default buffer size is usually only 64 KB, and default
maximum buffer size for is only 256KB
 Linux Autotuning default max = 128 KB;

 10-150 times too small!

 Home DSL, UK to US (RTT = 150, narrow link = 1 Mbps): 19 KB
 Default buffers are OK.

9

Slide: 17Brian L. Tierney

More Problems: TCP congestion control

Path =
LBL to
CERN
(Geneva)
OC-3, (in
2000), RTT
= 150 ms

average
BW =
30 Mbps

Slide: 18Brian L. Tierney

Work-around: Use Parallel Streams

graph from Tom Dunigan, ORNL

RTT = 70 ms

10

Slide: 19Brian L. Tierney

Tuned Buffers vs. Parallel Steams

0

5

10

15

20

25

30

no tuning tuned

TCP

buffers

10

parallel

streams,

no tuning

tuned

TCP

buffers, 3

parallel

streams

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

e
c

)

Slide: 20Brian L. Tierney

Parallel Streams Issues

Potentially unfair
Places more load

on the end hosts
But they are

necessary when
you don’t have root
access, and can’t
convince the
sysadmin to
increase the max
TCP buffers

graph from Tom Dunigan, ORNL

11

http://gridmon.dl.ac.uk/nfnn/

NFNN2, 20th-21st June 2005
National e-Science Centre, Edinburgh

Network Monitoring Tools

Slide: 22Brian L. Tierney

traceroute

>traceroute pcgiga.cern.ch
traceroute to pcgiga.cern.ch (192.91.245.29), 30 hops max, 40 byte packets
 1 ir100gw-r2.lbl.gov (131.243.2.1) 0.49 ms 0.26 ms 0.23 ms
 2 er100gw.lbl.gov (131.243.128.5) 0.68 ms 0.54 ms 0.54 ms
 3 198.129.224.5 (198.129.224.5) 1.00 ms *d9* 1.29 ms
 4 lbl2-ge-lbnl.es.net (198.129.224.2) 0.47 ms 0.59 ms 0.53 ms
 5 snv-lbl-oc48.es.net (134.55.209.5) 57.88 ms 56.62 ms 61.33 ms
 6 chi-s-snv.es.net (134.55.205.102) 50.57 ms 49.96 ms 49.84 ms
 7 ar1-chicago-esnet.cern.ch (198.124.216.73) 50.74 ms 51.15 ms 50.96

ms
 8 cernh9-pos100.cern.ch (192.65.184.34) 175.63 ms 176.05 ms 176.05

ms
 9 cernh4.cern.ch (192.65.185.4) 175.92 ms 175.72 ms 176.09 ms
10 pcgiga.cern.ch (192.91.245.29) 175.58 ms 175.44 ms 175.96 ms

Can often learn about the network from the router names:
ge = Gigabit Ethernet
oc48 = 2.4 Gbps (oc3 = 155 Mbps, oc12=622 Mbps)

12

Slide: 23Brian L. Tierney

Iperf

 iperf : very nice tool for measuring end-to-end TCP/UDP performance
 http://dast.nlanr.net/Projects/Iperf/
 Can be quite intrusive to the network

 Example:
 Server: iperf -s -w 2M
 Client: iperf -c hostname -i 2 -t 20 -l 128K -w 2M

Client connecting to hostname
[ID] Interval Transfer Bandwidth
[3] 0.0- 2.0 sec 66.0 MBytes 275 Mbits/sec
[3] 2.0- 4.0 sec 107 MBytes 451 Mbits/sec
[3] 4.0- 6.0 sec 106 MBytes 446 Mbits/sec
[3] 6.0- 8.0 sec 107 MBytes 443 Mbits/sec
[3] 8.0-10.0 sec 106 MBytes 447 Mbits/sec
[3] 10.0-12.0 sec 106 MBytes 446 Mbits/sec
[3] 12.0-14.0 sec 107 MBytes 450 Mbits/sec
[3] 14.0-16.0 sec 106 MBytes 445 Mbits/sec
[3] 16.0-24.3 sec 58.8 MBytes 59.1 Mbits/sec
[3] 0.0-24.6 sec 871 MBytes 297 Mbits/sec

Slide: 24Brian L. Tierney

pathrate / pathload

Nice tools from Georgia Tech:
 pathrate: measures the capacity of the narrow link
 pathload: measures the available bandwidth

Both work pretty well.
 pathrate can take a long time (up to 20 minutes)
 These tools attempt to be non-intrusive

Open Source; available from:
 http://www.pathrate.org/

13

Slide: 25Brian L. Tierney

pipechar

 Tool to measure hop-by-hop available bandwidth,
capacity, and congestion

 Takes 1-2 minutes to measure an 8 hop path
 client-side only tool: puts very little load on the network

(about 100 Kbits/sec)
 But not always accurate

 Results affected by host speed
Hard to measure links faster than host interface

 Results after a slow hop typically not accurate, for example, if
the first hop is a wireless link, and all other hops are 100 BT or
faster, then results are not accurate

 Available from: http://dsd.lbl.gov/NCS/
 part of the netest package

Slide: 26Brian L. Tierney

pipechar output

dpsslx04.lbl.gov(59)>pipechar firebird.ccs.ornl.gov
PipeChar statistics: 82.61% reliable
From localhost: 827.586 Mbps GigE (1020.4638 Mbps)
1: ir100gw-r2.lbl.gov (131.243.2.1)
| 1038.492 Mbps GigE <11.2000% BW used>
2: er100gw.lbl.gov (131.243.128.5)
| 1039.246 Mbps GigE <11.2000% BW used>
3: lbl2-ge-lbnl.es.net (198.129.224.2)
| 285.646 Mbps congested bottleneck <71.2000% BW used>
4: snv-lbl-oc48.es.net (134.55.209.5)
| 9935.817 Mbps OC192 <94.0002% BW used>
5: orn-s-snv.es.net (134.55.205.121)
| 341.998 Mbps congested bottleneck <65.2175% BW used>
6: ornl-orn.es.net (134.55.208.62)
| 298.089 Mbps congested bottleneck <70.0007% BW used>
7: orgwy-ext.ornl.gov (192.31.96.225)
| 339.623 Mbps congested bottleneck <65.5502% BW used>
8: ornlgwy-ext.ens.ornl.gov (198.124.42.162)
| 232.005 Mbps congested bottleneck <76.6233% BW used>
9: ccsrtr.ccs.ornl.gov (160.91.0.66)
| 268.651 Mbps GigE (1023.4655 Mbps)
10: firebird.ccs.ornl.gov (160.91.192.165)

14

Slide: 27Brian L. Tierney

tcpdump / tcptrace

 tcpdump: dump all TCP header information for a specified
source/destination
 ftp://ftp.ee.lbl.gov/

 tcptrace: format tcpdump output for analysis using xplot
 http://www.tcptrace.org/
 NLANR TCP Testrig : Nice wrapper for tcpdump and tcptrace tools

http://www.ncne.nlanr.net/TCP/testrig/

 Sample use:
 tcpdump -s 100 -w /tmp/tcpdump.out host hostname
 tcptrace -Sl /tmp/tcpdump.out
 xplot /tmp/a2b_tsg.xpl

Slide: 28Brian L. Tierney

tcptrace and xplot

X axis is time
Y axis is sequence number
 the slope of this curve gives the throughput over

time.
 xplot tool make it easy to zoom in

15

Slide: 29Brian L. Tierney

Zoomed In View
 Green Line: ACK values received from the receiver
 Yellow Line tracks the receive window advertised from the receiver
 Green Ticks track the duplicate ACKs received.
 Yellow Ticks track the window advertisements that were the same as

the last advertisement.
 White Arrows represent segments sent.
 Red Arrows (R) represent retransmitted segments

Slide: 30Brian L. Tierney

Other Tools

NLANR Tools Repository:
 http://www.ncne.nlanr.net/software/tools/

SLAC Network MonitoringTools List:
 http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

16

Slide: 31Brian L. Tierney

Other TCP Issues

Things to be aware of:
 TCP slow-start

On a path with a 50 ms RTT, it takes 12 RTT’s to
ramp up to full window size, so need to send about
10 MB of data before the TCP congestion window
will fully open up.

 host issues
Memory copy speed
I/O Bus speed
Disk speed

Slide: 32Brian L. Tierney

TCP Slow Start

17

Slide: 33Brian L. Tierney

Duplex Mismatch Issues

A common source of trouble with Ethernet
networks is that the host is set to full duplex, but
the Ethernet switch is set to half-duplex, or visa
versa.

Most newer hardware will auto-negotiate this, but
with some older hardware, auto-negotiation
sometimes fails
 result is a working but very slow network (typically only

1-2 Mbps)
 best for both to be in full duplex if possible, but some

older 100BT equipment only supports half-duplex
NDT is a good tool for finding duplex issues:

 http://e2epi.internet2.edu/ndt/

Slide: 34Brian L. Tierney

Jumbo Frames

 Standard Ethernet packet is 1500 bytes (aka: MTU)
 Some gigabit Ethernet hardware supports “jumbo frames”

(jumbo packet) up to 9 KBytes
 This helps performance by reducing the number of host interrupts
 Some jumbo frame implementations do not interoperate
 Most routers allow at most 4K MTUs

 First Ethernet was 3 Mbps (1972)
 First 10 Gbit/sec Ethernet hardware: 2001

 Ethernet speeds have increased 3000x since the 1500 byte frame
was defined

 Computers now have to work 3000x harder to keep the network full

18

Slide: 35Brian L. Tierney

Linux Autotuning

 Sender-side TCP buffer autotuning introduced in Linux 2.4
 TCP send buffer starts at 64 KB
 As the data transfer takes place, the buffer size is continuously re-

adjusted up max autotune size (default = 128K)
 Need to increase defaults: (in /etc/sysctl.conf)

increase TCP max buffer size
net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
increase Linux autotuning TCP buffer limits
min, default, and max number of bytes to use
net.ipv4.tcp_rmem = 4096 87380 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216

 Receive buffers need to be bigger than largest send buffer used
 Use setsockopt() call

Slide: 36Brian L. Tierney

Linux 2.4 Issues
 ssthresh caching

 ssthresh (Slow Start Threshold): size of CWND to use when
switching from exponential increase to linear increase

 The value for ssthresh for a given path is cached in the routing
table.

 If there is a retransmission on a connection to a given host, then
all connections to that host for the next 10 minutes will use a
reduced ssthresh.

 Or, if the previous connect to that host is particularly good, then
you might stay in slow start longer, so it depends on the path

 The only way to disable this behavior is to do the following before
all new connections (you must be root):
 sysctl -w net.ipv4.route.flush=1

 The web100 kernel patch adds a mechanism to permanently
disable this behavior:
 sysctl -w net.ipv4.web100_no_metrics_save = 1

19

Slide: 37Brian L. Tierney

ssthresh caching

•The value of
CWND when
this loss
happened will
get cached

Slide: 38Brian L. Tierney

Linux 2.4 Issues (cont.)
 SACK implementation problem

 For very large BDP paths where the TCP window is > 20 MB, you
are likely to hit the Linux SACK implementation problem.

 If Linux has too many packets in flight when it gets a SACK event,
it takes too long to located the SACKed packet,
 you get a TCP timeout and CWND goes back to 1 packet.

 Restricting the TCP buffer size to about 12 MB seems to avoid this
problem, but limits your throughput.

 Another solution is to disable SACK.
sysctl -w net.ipv4.tcp_sack = 0

 This is still a problem in 2.6, but they are working on a solution
 Transmit queue overflow

 If the interface transmit queue overflows, the Linux TCP stack
treats this as a retransmission.

 Increasing txqueuelen can help:
 ifconfig eth0 txqueuelen 1000

20

http://gridmon.dl.ac.uk/nfnn/

NFNN2, 20th-21st June 2005
National e-Science Centre, Edinburgh

Recent/Current TCP Work

Slide: 40Brian L. Tierney

TCP Response Function

Well known fact that TCP does not scale to high-
speed networks

Average TCP congestion window =
segments
 p = packet loss rate

What this means:
 For a TCP connection with 1500-byte packets and a

100 ms round-trip time, filling a 10 Gbps pipe would
require a congestion window of 83,333 packets, and a
packet drop rate of at most one drop every
5,000,000,000 packets.

 requires at most one packet loss every 6000s, or
1h:40m to keep the pipe full

p2.1

21

Slide: 41Brian L. Tierney

Proposed TCP Modifications

High Speed TCP: Sally Floyd
 http://www.icir.org/floyd/hstcp.html

BIC/CUBIC:
 http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/

 LTCP (Layered TCP)
 http://students.cs.tamu.edu/sumitha/research.html

HTCP: (Hamilton TCP)
 http://www.hamilton.ie/net/htcp/

Scalable TCP
 http://www-lce.eng.cam.ac.uk/~ctk21/scalable/

Slide: 42Brian L. Tierney

Proposed TCP Modifications (cont.)

 XCP:
 XCP rapidly converges on the optimal congestion window using a

completely new router paradigm.
This makes it very difficult to deploy and test

 http://www.ana.lcs.mit.edu/dina/XCP/

 FAST TCP:
 http://netlab.caltech.edu/FAST/

 Each of these alternatives give roughly similar throughput
 Vary mainly in “stability” and “friendliness” with other protocols

 Each of these require sender-side only modifications to
standard TCP

22

Slide: 43Brian L. Tierney

TCP: Reno vs. BIC

TCP-Reno
(Linux 2.4)

BIC-TCP
(Linux 2.6)

Slide: 44Brian L. Tierney

TCP: Reno vs. BIC

• BIC-TCP
recovers from
loss more
aggressively
than TCP-Reno

23

Slide: 45Brian L. Tierney

Sample Results
From Doug Leith, Hamilton Institute, http://www.hamilton.ie/net/eval/

Link Utilization

Fairness
Between Flows

Slide: 46Brian L. Tierney

New Linux 2.6 changes

 Added receive buffer autotuning: adjust receive window
based on RTT
 sysctl net.ipv4.tcp_moderate_rcvbuf
 Still need to increase max value: net.ipv4.tcp_rmem

 Starting in Linux 2.6.7 (and back-ported to 2.4.27), BIC
TCP is part of the kernel, and enabled by default.
 Bug found that caused performance problems under some

circumstances, fixed in 2.6.11.

 Added ability to disable ssthresh caching (like web100)
 net.ipv4.tcp_no_metrics_save = 1

24

Slide: 47Brian L. Tierney

Linux 2.6 Issues

 "tcp segmentation offload” issue:
 Linux 2.6 (< 2.6.11) has bug with certain Gigabit and

10 Gig ethernet drivers and NICs that support "tcp
segmentation offload",
 These include Intel e1000 and ixgb drivers,

Broadcom tg3, and the s2io 10 GigE drivers.
To fix this problem, use ethtool to disable

segmentation offload:
ethtool -K eth0 tso off

Bug fixed in Linux 2.6.12

Slide: 48Brian L. Tierney

Linux 2.6.12 Results

4 Mbps

8 Mbps

10 Mbps

Linux 2.4
Un-tuned

70 Mbps

300 Mbps

300 Mbps

Linux 2.4
Hand-tuned

560 Mbps

830 Mbps

700 Mbps

Linux 2.6
with BIC

Linux 2.6,
no BIC

Path

140 MbpsLBL to IE
RTT = 153 ms

625 MbpsLBL to PSC
RTT = 83 ms

500 MbpsLBL to ORNL
RTT = 67 ms

• Results = Peak Speed during 3 minute test
• Must increase default max TCP send/receive buffers
• Sending host = 2.8 GHz Intel Xeon with Intel e1000 NIC

• BIC-TCP is ON by default in Linux 2.6
• un-tuned results up to 100x faster!

25

Slide: 49Brian L. Tierney

Linux 2.6.12-rc3 Results

RTT = 67 ms

Note that BIC reaches
Max throughput MUCH
faster

Slide: 50Brian L. Tierney

Remaining Linux BIC Issues

 But: on
some
paths BIC
still seems
to have
problems…

RTT = 83 ms

26

http://gridmon.dl.ac.uk/nfnn/

NFNN2, 20th-21st June 2005
National e-Science Centre, Edinburgh

Application Performance Issues

Slide: 52Brian L. Tierney

Techniques to Achieve High
Throughput over a WAN

Consider using multiple TCP sockets for the data
stream

Use a separate thread for each socket
Keep the data pipeline full

 use asynchronous I/O
overlap I/O and computation

 read and write large amounts of data (> 1MB) at a time
whenever possible

 pre-fetch data whenever possible
Avoid unnecessary data copies

manipulate pointers to data blocks instead

27

Slide: 53Brian L. Tierney

Use Asynchronous I/O

 I/O followed by
processing

 overlapped I/O and
processing

almost a 2:1 speedup

Next IO starts
when processing
ends

remote IO

process
previous block

Slide: 54Brian L. Tierney

Throughput vs. Latency

 Most of the techniques we have discussed are designed
to improve throughput

 Some of these might increase latency
 with large TCP buffers, OS will buffer more data before sending it

 Goal of a distributed application programmer:
 hide latency

 Some techniques to help decrease latency:
 use separate control and data sockets
 use TCP_NODELAY option on control socket

 combine control messages together into 1 larger message
whenever possible on TCP_NODELAY sockets

28

Slide: 55Brian L. Tierney

scp Issues

Don’t use scp to copy large files!
 scp has its own internal buffering/windowing that

prevents it from ever being able to fill LFNs!
Explanation of problem and openssh patch

solution from PSC
 http://www.psc.edu/networking/projects/hpn-ssh/

Slide: 56Brian L. Tierney

Conclusions
 The wizard gap is starting to close (slowly)

 If max TCP buffers are increased
 Tuning TCP is not easy!

 no single solution fits all situations
 need to be careful TCP buffers are not too big or too small
 sometimes parallel streams help throughput, sometimes they hurt

 Linux 2.6 helps a lot
 Design your network application to be as flexible as possible

 make it easy for clients/users to set the TCP buffer sizes
 make it possible to turn on/off parallel socket transfers

 probably off by default
 Design your application for the future

 even if your current WAN connection is only 45 Mbps (or less), some day
it will be much higher, and these issues will become even more important

29

Slide: 57Brian L. Tierney

For More Information

http://dsd.lbl.gov/TCP-tuning/
 links to all network tools mentioned here
 sample TCP buffer tuning code, etc.

BLTierney@LBL.GOV

